Learning to Navigate in Complex Environments

arXiv 2016

Learning to navigate in complex environments with dynamic elements is an important milestone in developing AI agents. In this work we formulate the navigation question as a reinforcement learning problem and show that data efficiency and task performance can be dramatically improved by relying on additional auxiliary tasks. In particular we consider jointly learning the goal-driven reinforcement learning problem with a self-supervised depth prediction task and a self-supervised loop closure classification task. This approach can learn to navigate from raw sensory input in complicated 3D mazes, approaching human-level performance even under conditions where the goal location changes frequently. We provide detailed analysis of the agent behaviour, its ability to localise, and its network activity dynamics, showing that the agent implicitly learns key navigation abilities.

View Publication

Latest research news

View the blog