DPPy: DPP Sampling with Python

Abstract

Determinantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms for both finite and continuous DPPs. The project is hosted on GitHubm and equipped with an extensive documentationDeterminantal point processes (DPPs) are specific probability distributions over clouds of points that are used as models and computational tools across physics, probability, statistics, and more recently machine learning. Sampling from DPPs is a challenge and therefore we present DPPy, a Python toolbox that gathers known exact and approximate sampling algorithms for both finite and continuous DPPs. The project is hosted on GitHubm and equipped with an extensive documentation.

Publications