Hierarchical Representations for Efficient Architecture Search
Authors:
H Liu,
K Simonyan,
O Vinyals,
C Fernando,
K Kavukcuoglu
arXiv 2017
Understanding grounded language learning agents
Authors:
F Hill,
K M Hermann,
P Blunsom,
S Clark
Nature 2017
Mastering the game of Go without Human Knowledge
Authors:
D Silver,
J Schrittwieser,
K Simonyan,
I Antonoglou,
A Huang,
A Guez,
T Hubert,
L Baker,
M Lai,
A Bolton,
Y Chen,
T Lillicrap,
Fan Hui,
L Sifre,
G van den Driessche,
T Graepel,
D Hassabis
NIPS 2017
A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning
Authors:
M Lanctot,
V Zambaldi,
A Gruslys,
A Lazaridou,
K Tuyls,
J Perolat,
D Silver,
T Graepel
arXiv 2017
Rainbow: Combining Improvements in Deep Reinforcement Learning
Authors:
M Hessel,
J Modayil,
H van Hasselt,
T Schaul,
G Ostrovski,
W Dabney,
D Horgan,
B Piot,
M G Azar,
D Silver
Nature Neuroscience 2017
Dorsal hippocampus contributes to model-based planning
Authors:
K Miller,
M Botvinick,
C D Brody
NIPS 2017
Variational Memory Addressing in Generative Models
Authors:
J Bornschein,
A Mnih,
D Zoran,
DJ Rezende
Nature Human Behaviour 2017
The successor representation in human reinforcement learning
Authors:
I Momennejad,
E M Russek,
J H Cheong,
M Botvinick,
N Daw,
S J Gershman
ICCV 2017
Multi-Task Self-Supervised Visual Learning
Authors:
C Doersch,
A Zisserman
arXiv 2017
StarCraft II: A New Challenge for Reinforcement Learning
Authors:
O Vinyals,
D Silver,
H van Hasselt,
T Schaul,
K Simonyan,
S Petersen,
S Gaffney,
J Schrittwieser,
J Agapiou,
H Küttler,
A Makhzani,
M Yeo,
A S Vezhnevets,
P Georgiev,
S Bartunov,
T Ewalds,
T Lillicrap,
K Calderone,
P Keet,
A Brunasso,
D Lawrence,
A Ekermo,
J Repp,
R Tsing
arXiv 2017
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards
Authors:
M Vecerik,
T Hester,
J Scholz,
F Wang,
O Pietquin,
B Piot,
N Heess,
T Rothörl,
T Lampe,
M Riedmiller
Neuron 2017
Neuroscience-Inspired Artificial Intelligence
Authors:
D Hassabis,
D Kumaran,
C Summerfield,
M Botvinick
arXiv 2017
DARLA: Improving Zero-Shot Transfer in Reinforcement Learning
Authors:
I Higgins,
A Pal,
A Rusu,
L Matthey,
C Burgess,
A Pritzel,
M Botvinick,
C Blundell,
A Lerchner
arXiv 2017
On the State of the Art of Evaluation in Neural Language Models
Authors:
G Melis,
C Dyer,
P Blunsom
NIPS 2017
Imagination-Augmented Agents for Deep Reinforcement Learning
Authors:
T Weber,
S Racaniere,
D Reichert,
L Buesing,
A Guez,
D J Rezende,
A Puigdomènech,
O Vinyals,
N Heess,
Y Li,
R Pascanu,
P Battaglia,
D Silver,
D Wierstra
arXiv 2017
Learning model-based planning from scratch
Authors:
R Pascanu,
Y Li,
O Vinyals,
N Heess,
L Buesing,
S Racaniere,
D Reichert,
T Weber,
D Wierstra,
P Battaglia
NIPS 2017
A multi-agent reinforcement learning model of common-pool resource appropriation
Authors:
J Perolat,
J Z Leibo,
V Zambaldi,
C Beattie,
K Tuyls,
T Graepel
ICML 2017
A Distributional Perspective on Reinforcement Learning
Authors:
M G Bellemare,
W Dabney,
R Munos
arXiv 2017
The Intentional Unintentional Agent: Learning to Solve Many Continuous Control Tasks Simultaneously
Authors:
S Cabi,
S Gomez Colmenarejo,
M W Hoffman,
M Denil,
Z Wang,
N de Freitas
DeepMind.com uses cookies to help give you the best possible user experience and to allow us to see how the site is used. By using this site, you agree that we can set and use these cookies. For more information on cookies and how to change your settings, see our Privacy Policy.